水杨酸诱导苹果抗轮纹病差异表达基因分析
详细信息    查看全文 | 推荐本文 | 收藏本文
  • 英文篇名:Analysis of differentially expressed genes in different resistant varieties to apple ring rot induced by salicylic acid
  • 作者:侯珲 ; 周增强 ; 王丽 ; 王生荣
  • 英文作者:HOU Hui;ZHOU Zengqiang;WANG Li;WANG Shengrong;College of Plant Protection, Gansu Agricultural University;Zhengzhou Research Institute of Fruits, Chinese Academy of Agricultural Sciences;
  • 关键词:苹果 ; 苹果轮纹病 ; 水杨酸 ; 差异基因 ; 诱导
  • 英文关键词:apple;;apple ring rot;;salicylic acid;;differentially expressed gene;;induced
  • 中文刊名:植物保护
  • 英文刊名:Plant Protection
  • 机构:甘肃农业大学植物保护学院;中国农业科学院郑州果树研究所;
  • 出版日期:2020-02-08
  • 年:2020
  • 期:01
  • 基金:河南省基础与前沿技术研究计划(152300410233);; 现代农业(苹果)产业技术体系建设专项(CARS-28);; 中国农业科学院科技创新工程(CAAS-ASTIP)
  • 页:122-128+137
  • CN:11-1982/S
  • ISSN:0529-1542
  • 分类号:S436.611.1
摘要
以对苹果轮纹病抗病性不同的两个苹果品种‘北之幸’和‘礼泉短富’为材料,利用高通量测序技术对水杨酸(SA)处理后的苹果叶片cDNA文库进行差异基因表达谱分析。结果表明,经SA诱导后,抗病品种‘北之幸’的差异表达基因有257个;感病品种‘礼泉短富’的差异表达基因有150个;不同品种间得到差异表达基因828个。经GO分析,大部分差异基因参与代谢过程、应答刺激、生物学调控、免疫系统过程和抗氧化活性等。与抗性相关的功能注释主要涉及信号转导机制、防御机制和能量产生与转导等,但感病品种‘礼泉短富’没有注释到有关防御机制的差异基因。推测这些基因可能在SA诱导苹果抗轮纹病的过程中起重要作用。差异基因参与抗病相关的代谢通路涉及过氧化物酶体途径、苯丙烷生物合成途径、苯丙氨酸代谢途径、植物与病原菌互作途径和植物激素信号转导途径等。且抗性品种产生的差异基因数量、涉及的代谢通路均较感病品种多,说明抗病品种的抗性相关基因更易受到SA的诱导。
    Two different varieties of apple were taken as materials to analyze cDNA library of apple leaves treated with salicylic acid by high-throughput sequencing and detect the differentially expressed genes. The results showed that there were 257 differentially expressed genes in the resistant cultivar ‘Kitanosach' and 150 differentially expressed genes in the susceptible cultivar ‘Liquanduanfu' and 828 differentially expressed genes between different varieties treated with salicylic acid. The differentially expressed genes were functionally categorized by GO term analysis, which demonstrated that most of the differentially expressed genes were involved in such biological processes as metabolic process, response to stimulus, biological regulation, immune system process, antioxidant activity and so on. The functional annotation associated with resistance identified genes mainly related to signal transduction mechanism, defense mechanism and energy production and transduction, etc, but the genes related to defense mechanism were not identified in ‘Liquanduanfu'. It was speculated that these genes played an important role in the process of resistance to apple ring rot induced by salicylic acid. Differentially expressed genes involved in disease resistance-related metabolic pathways mainly included peroxisome, phenylpropanoid biosynthesis, phenylalanine metabolism, plant-pathogen interaction, plant hormone signal transduction and so on. The differentially expressed genes and the metabolic pathways in the resistant cultivar ‘Kitanosach' were more than in the susceptible cultivar ‘Liquanduanfu', suggesting that the differentially expressed genes related to disease resistance were more easily induced by SA in resistant cultivars.
引文
[1] 张艳敏,冯涛,张春雨,等.新疆野苹果研究进展[J].园艺学报,2009,36(3):447-452.
    [2] 翟衡,赵政阳,王志强,等.世界苹果产业发展趋势分析[J].果树学报,2005,22(1):44-50.
    [3] 过国南,阎振立,张顺妮.我国建国以来苹果品种选育研究的回顾及今后育种的发展方向[J].果树学报,2002,19(2):127-134.
    [4] 过国南,阎振立,张恒涛,等.我国早、中熟苹果品种的生产现状、选育进展及发展展望[J].果树学报,2009,26(6):871-877.
    [5] ENDO J,TAKAHASHI W,IKEGAMI T,et al.Induction of flowering by inducers of systemic acquired resistance in the Lemna plant[J].Bioscience Biotechnology & Biochemistry,2009,73(1):183-185.
    [6] BLANCO F,SALINAS P,CECCHINI N M,et al.Early genomic responses to salicylic acid in Arabidopsis [J].Plant Molecular Biology,2009,70(1/2):79-102.
    [7] 韦朝领,高香凤,江昌俊,等.基因表达谱差异显示技术及其在植物对害虫取食诱导反应研究中的应用(综述)[J].安徽农业大学学报,2006,33(1):94-99.
    [8] 周兰,张利义,张彩霞,等.苹果实时荧光定量 PCR 分析中内参基因的筛选[J].果树学报,2012,29(6):965-970.
    [9] LIVAK K J,SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method [J].Methods,2001,25:402-408.
    [10] KIM Y J,HWANG B K.Isolation of a basic 34 kD β-1,3-glucanase with inhibitory activity against Phytophthora capsici from pepper stems [J].Physiological and Molecular Plant Pathology,1997,50:103-115.
    [11] 王均.植物抗病信号传导研究的现状和展望[J].生命的化学,1995,5:11-14.
    [12] 周欣,陈善娜.水杨酸在植物诱导抗性方面研究进展[J].云南大学学学报(自然科学版),2001,23(S1):106-108.
    [13] 蔡新忠,郑重.植物系统性获得抗病性的产生机理和途径[J].植物保护学报,1999,26(1):83-90.
    [14] MALAMY J,CARR J P,KLESSIG D F,et al.Salicylic acid:a likely endogenous signal in the resistance response of tobacco to viral infection [J].Science,1990,250:1002-1004.
    [15] WARD E R,UKNES S J,WILLIAMS S C,et al.Co-ordinate gene activity in response to agent s that induce systemic acquired resistance [J].Plant Cell,1991,3:1085-1094.
    [16] 余迪求,岑川,李宝健,等.植物系统获得的抗病性和信号传导[J].植物学报,1999,41(2):115-124.
    [17] MALAMY J,HENNIG J,KLESSIG D F.Temperature depended induction of salicylic acid and its conjugates during the resistance response to tobacco mosaic virus infection [J].Plant Cell,1992,4:359-365.
    [18] RASMUSSEN J B,HAMMERSCHMIDT R,ZOOK M N.Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv.syringae [J].Plant physiology,1991,97:1342-1347.
    [19] BOWLING S A,GUO A,GORDON A S,et al.A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance [J].Plant Cell,1994,6:1845-1857.
    [20] SHAH J,TSUI F,KLESSIG D F.Characterization of a salicylic acid-insensitive mutant (sail) of Arabidopsis thaliana,identified in a selective screen utilizing the SA-inducible expression of the lms2 gene [J].Molecular Plant Microbe Interaction,1997,10:69-78.
    [21] JONES A M.Surprising signals in plant cells[J].Science,1994,263(5144):183-184.
    [22] MARTINEZ C,PONS E,PRATS G,et al.Salicylic acid regulates flowering time and links defence responses and reproductive development [J].Plant Journal,2004,37(2):209-217.
    [23] CLELAND CHARLES F,AJAMI A.Identification of the flower-inducing factor isolated from aphid honeydew as being salicylic acid [J].Plant Physiology,1974,54(6):904-906.
    [24] 李德红,潘瑞炽.水杨酸在植物体内的作用[J].植物生理学通讯,1995,31(2):144-149.
    [25] 原永兵,曹宗巽.水杨酸在植物体内的作用[J].植物学通报,1994,11(3):1-3.
    [26] 金慧,栾雨时.转录因子在植物抗病基因工程中的研究进展[J].中国生物工程杂志,2010,30(10):94-99.
    [27] CLARKE J D,LIU Yidong,KLESSIG D F.et al.Uncoupling PR gene expression from NPR1 and bacterial resistance:characterization of the dominant Arabidopsis cpr6-1 mutant[J].Plant Cell,1998,10:557-569.
    [28] CAO Hui,BOWLING S A,GORDON A S,et al.Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance [J].Plant Cell,1994,6:1583-1592.
    [29] CAO Hui,GLAZEBROOK J,CLARKE J D,et al.The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats [J].Cell,1997,88:57-63.
    [30] DELANEY T P,FRIEDRICH L,RYALS J A.Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance [J].Proceedings of the National Academy of Sciences of the United States of America,1995,92:6602-6606.
    [31] FAN Weihe,DONG Xinnian.In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid mediated gene activation in Arabidopsis [J].Plant Cell,2002,14:1377-1389.
    [32] DESPRéS C,CHUBAK C,ROCHON A,et al.The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1[J].Plant Cell,2003,15:2181-2191.
    [33] KESARWANI M,YOO J,DONG Xinnian.Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis [J].Plant Physiology,2007,144:336-346.
    [34] ROCHON A,BOYLE P,WIGNES T,et al.The coactivator function of Arabidopsis NPR1 requires the core of its BTB/POZ domain and the oxidation of C-terminal cysteines[J].Plant Cell,2006,18:3670-3685.
    [35] TADA Y,SPOEL S H,PAJEROWSKA-MUKHTAR K,et al.Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins [J].Science,2008,321:952-956.
    [36] JOHNSON C,MHATRE A,ARIAS J.NPR1 preferentially binds to the DNA inactive form of Arabidopsis TGA2 [J].Biochimica Biophys Acta,2008,1779:583-589.
    [37] DIXON R A,ACHNINE L,KOTA P,et al.The phenylpropanoid pathway and plant defense:A genomics perspective [J].Molecular Plant Pathology,2002,3:371-390.

中国园林博物馆北京筹备办公室 | 版权所有,未经许可严禁复制或镜像

地址:北京市丰台区射击场路15号 邮编:100072 

京ICP备19031310号     京公网安备11010602006846号