miRNA在植物病原调控方面的研究进展
详细信息    查看全文 | 推荐本文 | 收藏本文
  • 英文篇名:miRNA-mediated Regulation Involved in Plant Pathogen
  • 作者:杨丽娟 ; 李世访 ; 卢美光
  • 英文作者:YANG Li-juan;LI Shi-fang;LU Mei-guang;State Key Laboratory for Biology of Plant Diseases and Insect Pests,Institute of Plant Protection,Chinese Academy of Agricultural Sciences;
  • 关键词:miRNA ; 植物 ; 果树 ; 病原 ; 调控
  • 英文关键词:miRNA;;plant;;fruit tree;;pathogen;;regulation
  • 中文刊名:生物技术通报
  • 英文刊名:Biotechnology Bulletin
  • 机构:中国农业科学院植物保护研究所植物病虫害生物学国家重点实验室;
  • 出版日期:2020-01-26
  • 年:2020
  • 期:01
  • 基金:国家重点研发计划(2017YFE0110900)
  • 页:106-114
  • CN:11-2396/Q
  • ISSN:1002-5464
  • 分类号:S432.4
摘要
miRNA是一类在真核生物体内普遍存在的,长度在22 nt左右的单链小RNA分子。大量研究发现,miRNA可广泛参与植物的生长发育、新陈代谢、物质运输、逆境响应及病原防御等多种生理生化过程。目前已经从植物中鉴定到大量的miRNA,但其中参与植物病原调控相关miRNA的研究较少。miRNA作为一种重要的转录调控因子,可参与调控病原相关分子模式触发的免疫反应和效应因子触发的免疫反应。拟南芥中,miRNA393通过靶向生长素受体基因对植物生长素进行负调控,从而在抵御细菌侵染方面发挥作用;水稻中,miRNA528可响应水稻条纹病毒(RSV)的侵染,人为提高miRNA528水平有助于维持水稻对RSV的抗性。阐述了miRNA的作用机制,与植物细菌、真菌和病毒侵染相关的miRNA研究进展,总结了葡萄,苹果,梨和桃等具有重要经济价值果树中病原调控相关miRNA研究情况,旨在为今后miRNA在植物,特别是在果树抗病研究方面提供全面的理论依据。
    MicroRNA(miRNA)is a kind of small single-stranded RNA molecule with a length of about 22 nt,which is ubiquitous in eukaryotes. A large number of studies have found that miRNA is widely involved in the growth and development of plant,metabolism,material transport,stress response,pathogen defense and other biochemical processes. At present,a large number of miRNAs have been identified from plants,while there are few studies on miRNA involved in the regulation of plants pathogens. As an important transcriptional regulator,miRNAs can be involved in the regulation of PAMP-triggered immunity and effector-triggered immunity. In Arabidopsis,miRNA393 negatively regulates auxin by targeting the auxin receptor gene,thereby plays a role in resisting bacterial infection. In rice,miRNA528 can be in response to the infection of rice stripe virus(RSV),and the increase of miRNA528 level using artificial means will help maintain the rice resistance to RSV. This paper describes the mechanism of action of miRNAs,the progress of miRNAs related to plant bacterial,fungal,viral infections,and summarizes the research on pathogen-regulated miRNAs in fruit trees with important economic value such as grapes,apples,pears,and peaches,aiming at providing a comprehensive theoretical basis for mi RNA research in plants,especially in fruit tree.
引文
[1]张西玉. miRNA:一种新的基因调控元件[J].乐山师范学院学报, 2006(12):51-53.
    [2]许振华,谢传晓.植物microRNA与逆境响应研究进展[J].遗传, 2010, 32(10):1018-1030.
    [3] Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase:from microRNA sequences to function[J]. Nucleic Acids Res, 2019,47:155-162.
    [4]伍林涛,阮颖,彭琦,等. miRNA研究进展[J].作物研究,2006(5):572-576.
    [5]武亮,戚益军.植物小分子RNA研究进展[J].生命科学,2010, 22(7):682-687.
    [6]史磊,郭艳兵,申远. miRNA调控药用植物生长发育和次生代谢[J].中国生物化学与分子生物学报, 2019, 35(4):361-370.
    [7]杨珊珊,陈冠良,姚建春. miRNA在植物抗逆方面的研究进展[J].种子科技, 2019, 37(4):154.
    [8] Palatnik JF, Wollmann H, Schommer C, et al. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319[J]. Developmental Cell, 2007, 13(1):115-125.
    [9] Achard P, Herr A, Baulcombe DC, et al. Modulation of floral development by a gibberellin-regulated microRNA[J]. Development,2004, 131(14):3357-3365.
    [10] Zhang B. MicroRNA:a new target for improving plant tolerance to abiotic stress[J]. Journal of Experimental Botany, 2015, 66(7):1749-1761.
    [11] Tang J, Chu C. MicroRNAs in crop improvement:fine-tuners for complex traits[J]. Nat Plants, 2017, 3:17077.
    [12]徐涛,张富春.植物miRNA抗胁迫机理研究进展[J].生物技术通报, 2008(5):5-9.
    [13]孙宗艳.盐/干旱胁迫下甜菜幼苗中miR160/164及其靶基因的表达与分析[D].哈尔滨:哈尔滨工业大学, 2017.
    [14]谷彩红,陈家红,张荃. miRNA参与植物耐逆性调控的研究进展[J].安徽农业科学, 2017, 45(34):148-151.
    [15]江曾明,何娟,莫蓓莘,等.植物miRNA参与调控作物农艺性状的研究进展[J].生物化学与生物物理进展, 2019, 46(3):221-237.
    [16]曾幼玲,杨瑞瑞.植物miRNA的生物学特性及在环境胁迫中的作用[J].中国农业科学, 2016, 49(19):3671-3682.
    [17] Lu XY, Huang XL. Plant miRNAs and abiotic stress responses[J]. Biochemical and Biophysical Research Communications, 2008, 368(3):458-462.
    [18] Chendrimada TP, Finn KJ, Ji XJ, et al. MicroRNA silencing through RISC recruitment of e IF6[J]. Nature, 2007, 447(7146):823-828.
    [19] Kumar R. Role of micro RNAs in biotic and abiotic stress responses in crop plants[J]. Applied Biochemistry and Biotechnology,2014, 174(1):93-115.
    [20]陈思,陈薇,庞基良. miRNAs调控植物生长发育的研究进展[J].北方园艺, 2016(5):200-206.
    [21] Balyan S, Kumar M, Mutum RD, et al. Identification of miRNA mediated drought responsive multi-tiered regulatory network in drought tolerant rice, Nagina 22[J]. Scientific Reports, 2017, 7(1):15446-15450.
    [22] Yang C, Li D, Mao D, et al. Overexpression of microRNA319impacts leaf morphogenesis and leads to enhanced cold tolerance in rice(Oryza sativa L.)[J]. Plant, Cell&Environment, 2013, 36(12):2207-2218.
    [23] Chen L, LuanY, Zhai J. Sp-miR396a-5p acts as a stress-responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility to Phytophthora nicotianae infection in transgenic tobacco[J]. Plant Cell Reports, 2015, 34(12):2013-2025.
    [24] Li F, Pignatta D, Bendix C, et al. MicroRNA regulation of plant innate immune receptors[J]. Proceedings of the National Academy Sciences of the United States of America, 2012, 109(5):1790-1795.
    [25] Mica E, Piccolo V, Delledonne M, et al. High throughput approaches reveal splicing of primary microRNA transcripts and tissue specific expression of mature microRNAs in Vitis vinifera[J]. BMC Genomics, 2009, 10:558.
    [26] Zhang Y, Xia R, Kuang H, et al. The diversification of plant NBSLRR defense genes directs the evolution of microRNAs that target them[J]. Molecular biology and evolution, 2016, 33(10):2692-2705.
    [27] Lu S, Sun Y, Amerson H, et al. MicroRNAs in Loblolly pine(Pinustaeda L.)and their association with fusiform rust gall development[J]. The Plant Journal, 2007, 51(6):1077-1098.
    [28] Zhao JP, Jiang XL, Zhang BY, et al. Involvement of micro RNA-mediated gene expression regulation in the pathological development of stem canker disease in Populus trichocarpa[J].PLoS One, 2012, 7(9):44-68.
    [29] Luo M, Gao, Peng H, et al. MiR393-targeted TIR1-like(F-box)gene in response to inoculation to R. Solani in Zea mays[J].Acta Physio-logiae Plantarum, 2014, 36(5):1283-1291.
    [30]刘震.与玉米弯孢叶斑病抗性相关的miRNA筛选与鉴定[D].大庆:黑龙江八一农垦大学, 2018.
    [31]卢远根.水稻中与水稻一稻瘟病菌互作相关的microRNA初步研究[D].雅安:四川农业大学, 2014.
    [32] Navarro L, Dunoyer P, Jay F, et al. Aplant mi RNA contributes to antibacterial resistance by repressing auxin signaling[J].Science Signal-ing, 2006, 312(5772):436-439.
    [33] Ehya F, Monavarfeshani A, Fard EM, et al. Phytoplasmares-ponsive microRNAs modulate hormonal, nutritional, and stress signaling pathways in mexican lime trees[J]. PLoS One, 2013, 8(6):66-72.
    [34] Li Y, Zhang Q, Zhang J, et al. Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immu-nity[J]. Plant Physiology, 2010, 152(4):2222-2231.
    [35] Dunoyer P, Himber C, Voinnet O. Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections[J]. Nature Genetics, 2008, 38(2):258-263.
    [36] Bazzini AA, Hopp HE, Beachy RN, et al. Infection and coaccumulation of Tobacco mosaic virus proteins alter microRNA levels, correlating with symptom and plant development[J].Proceedings of the National Academy Sciences of the United States of America 2007, 104(29):12157-12162.
    [37] Wu JG, Yang RX, Yang ZR, et al. ROS accumulation and antiviral defence control by microRNA528 in rice[J]. Nature Plants,2017, 3(1):16203.
    [38] Kasschau KD, Xie Z, Allen E, et al. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction[J]. Developmental Cell, 2003, 4:205-217.
    [39] Qu J, Ye J, Fang RX. Artificial microRNA-mediated virus resistance in plants[J]. Journal of Virology, 2007, 81(12):6690-6699.
    [40] Niu QW, Lin SS, Reyes JL, et al. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance[J]. Nature Biotechnology, 2006, 24(11):1420-1428.
    [41] Lin SS, Wu HW, Elena SF, et al. Molecular evolution of a viral noncoding sequence under the selective pressure of amiRNA-mediated silencing[J]. PLoS Pathogens, 2009, 5(2):e1000312.
    [42]奥云朝伦. MicroRNA调控下的RNAi途径关键基因及NBSLRR类抗病基因在SMV侵染大豆中的作用研究[D].呼和浩特:内蒙古大学, 2016.
    [43] Garcia-Guzman G, Heil M. Life histories of hosts and pathogens predict patterns in tropical fungal plant diseases[J]. New Phytologist, 2014, 201(4):1106-1120.
    [44]李华,郭明浩.葡萄霜霉病预测模型及预警技术研究进展[J].中国农学通报, 2006, 21(10):313-316.
    [45]蔡斌,李成慧,彭日荷,等.葡萄microRNA的计算识别[J].华北农学报, 2008, 23(S2):213-216.
    [46]黄飞飞.苹果microRNA的检测鉴定及前体结构预测[D].沈阳:沈阳农业大学, 2010.
    [47] Gao ZH, Luo XY, Shi T, et al. Identification and validation of potential conserved microRNAs and their targets in peach(Prunus persica)[J]. Molecules and Cells, 2012, 34(3):239-249.
    [48]张秋雷,陈秋菊,张懿,等.'鸭梨'miRNA及其靶基因分析[J].北京:中国科技论文在线, 2017-08-10.
    [49] Barakat A, Sriram A, Park J, et al. Genome wide identification of chilling responsive microRNAs in Prunus persica[J]. BMC Genomics, 2012, 13:481.
    [50] Eldem V,?elikkol AA, Ozhuner E, et al. Genome wide identification of miRNAs responsive to drought in peach(Prunus persica)by high-throughput deep sequencing[J]. PLoS One,2012, 7(12):e50298.
    [51] Pekmezci AK, Karakulah G, Unver T. Discovery of droughtresponsive transposable element-related peach miRNAs[J]. Bio Rxiv, 2017, 5:143115.
    [52]冷翔鹏.葡萄应答铜胁迫的分子机理研究[D].南京:南京农业大学, 2015.
    [53]韩丽娟.华东葡萄‘白河-35-1’抗白粉病相关miRNA的鉴定[D].杨凌:西北农林科技大学, 2015.
    [54]都贝贝.苹果轮纹病抗性相关miRNA的筛选[D].南京:南京农业大学, 2013.
    [55]宋顺,黄东梅,王安邦,等.作物抗逆相关miRNA的研究进展[J].分子植物育种, 2018, 16(7):2180-2186.
    [56]刘娟.热处理对沙梨离体植株体内microRNAs和来源于ASGV的vsiRNAs的影响[D].武汉:华中农业大学, 2015.
    [57] Zhang Y, Yu M, Yu H, et al. Computational identification of micro RNAs in peach expressed sequence tags and validation of their precise sequences by mi R-RACE[J]. Molecular Biology Reports, 2012, 39(2):1975-1987.
    [58] Jaillon O, Aury JM, Noel B, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla[J]. Nature, 2007, 449(7161):463-467.
    [59]张颖,樊秀彩,姜建福,等.基于microRNA测序分析miRNA在刺葡萄抗白腐病中的作用[J].果树学报, 2019, 36(2):143-152.
    [60]方辉,曲俊杰,孙嘉曼,等.葡萄miR169及其靶基因的生物信息学分析[J].南方农业学报, 2017, 48(8):1329-1334.
    [61] Ma C, Lu Y, Bai S, et al. Cloning and characterization of miRNAs and their targets, including a novel miRNA-targeted NBS-LRR protein class gene in apple(Golden Delicious)[J]. Molecular Plant, 2014, 7(1):218-230.
    [62] Bartel DP. MicroRNAs:target recognition and regulatory functions[J]. Cell, 2009, 136(2):215-233.
    [63] Chen XM. Small RNAs and their roles in plant development[J].Annu Rev Cell Dev Biol, 2009, 25:21-44.
    [64]贾万忠,李志,伦照荣.病毒微小RNA的发现及其功能[J].科学通报, 2007(23):2705-2714.
    [65]伍国强,刘海龙,刘左军. RNAi技术及其在植物中的应用[J].分子植物育种, 2018, 16(19):6299-6307.
    [66] Schwab R, Ossowski S, Riester M, et al. Highly specific gene silencing by artificial microRNAs in Arabidopsis[J]. Plant Cell,2006, 18(5):1121-33.
    [67] Sunkar R, Li YF, Jagadeeswaran G, et al. Functions of microRNAs in plant stress responses[J]. Trends in Plant Science, 2012, 17(4):196-203.
    [68] Wu C, Li XY, Guo S, et al. Analyses of RNA-Seq and sRNA-Seq data reveal a complex network of anti-viral defense in TCV-infected Arabidopsis thaliana[J]. Scientific Reports, 2016, 6:36007.
    [69] Zhou Y, Xu ZN, Duan CX, et al. Dual transcriptome analysis reveals insights into the response to rice black-streaked dwarf virus in maize[J]. Journal of Experimental Botany, 2016, 67(15):4593-4609.
    [70] Xu DL, Mou G, Wang K, et al. MicroRNAs responding to southern rice black-streaked dwarf virus infection and their target genes associated with symptom development in rice[J]. Virus Research, 2014, 190:60-68.
    [71] Naqvi AR, Haq QM, Mukherjee SK, et al. MicroRNA profiling of tomato leaf curl new delhi virus(tolcndv)infected tomato leaves indicates that deregulation of mir159/319 and mir172 might be linked with leaf curl disease[J]. Virology Journal, 2010, 7:281.
    [72] Shivaprasad PV, Chen HM, Patel K, et al. A micro RNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs[J]. The Plant Cell, 2012, 24(3):859-874.
    [73] Fahim M, Millar AA, Wood CC, et al. Resistance to wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat[J]. Plant Biotechnology Journal, 2012, 10(2):150-163.
    [74] Snyman MC, Solofoharivelo MC, Souza-Richards R, et al. The use of high-throughput small RNA sequencing reveals differentially expressed microRNAs in response to aster yellows phytoplasmainfection in Vitis vinifera cv.‘Chardonnay’[J]. PLoS One, 2017,12(8):e0182629.

中国园林博物馆北京筹备办公室 | 版权所有,未经许可严禁复制或镜像

地址:北京市丰台区射击场路15号 邮编:100072 

京ICP备19031310号     京公网安备11010602006846号